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Abstract
We calculate spin-Hall conductivities in two dimensional electron systems with
Rashba spin–orbit interaction. The salient feature is that, apart from the usual
spin-Hall conductivity σ z

xy , which corresponds to the induction of out-of-plane
spin current due to the application of transverse charge current, there is a novel
spin-Hall conductivity σ⊥

xy , which arises due to the induction of transverse spin-
polarized current in the transverse direction by the application of in-plane spin-
polarized current. This phenomenon, which we call the ‘spin–spin’ Hall effect,
is a spin analogue of the conventional Hall effect, but with no magnetic field.
This contribution may be understood through the spin-diffusive equation.

1. Introduction

Following the pioneering proposal of a device called the spin field effect transistor (SFET) by
Datta and Das [1], there has been growing interest in the field of spintronics [2], which is the
science of coherent manipulation of spin, because of its potential applications in spin-memory
and quantum computing devices [3]. This device consists of a two dimensional electron system
(2DES), controlled by gate voltage in a semiconductor heterostructure with spin-polarized
contacts. A spin entered from a spin-polarized source in the 2DES precesses due to the
Rashba spin–orbit (SO) interaction arising from the lack of structural inversion symmetry in the
semiconductor heterostructures. The spin of the electrons can be made to transport coherently
and the spin-polarized drain whose spin polarization is parallel to that of the source can detect
the transportation of spin. The spin current can be manipulated by controlling gate voltage
since the Rashba SO coupling depends on it. However, the momentum relaxation due to elastic
scattering of the electrons from impurity potential leads to spin relaxation and thereby destroys
spin coherence. Although SFET has not been achieved yet, the modulation of SO coupling by
gate voltage has been observed in InGaAs/InAlAs and GaAs/AlGaAs heterostructures [4–6].
This motivates us to study the system of electrons with SO interactions.

A remarkable consequence of the SO interaction is the spin-Hall effect where an electric
field induces a transverse out-of-plane spin current and thereby a spin imbalance takes
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place between two opposite edges of the sample. Ever since the prediction of the intrinsic
dissipationless spin-Hall effect in hole-doped semiconductor systems [7], this effect has
drawn intense theoretical as well as experimental activities. Although Sinova et al [8] have
predicted universal (independent of the strength of Rashba spin–orbit interaction) dc spin-
Hall conductivity (SHC) σ z

xy = e/8π in a pure 2DES, the issue of SHC in the presence of
non-magnetic impurities remains highly controversial. A number of analytical works [9–11]
based on the Kubo formula and quantum kinetic equations suggest that σ z

xy vanishes for any
amount of elastic disorder in the diffusive transport regime. This dramatic vanishing of SHC
in the presence of disorder is argued to be a more generic phenomenon [12] as σ z

xy also
vanishes for any amount of magnetic field in a pure system. In contrast, experiments [15–17]
seem to suggest that there is nonequilibrium spin accumulation in the edges, transverse to the
direction of application of charge current. Numerical studies [13] based on the Landauer–
Buttiker approach in mesoscopic systems with leads cannot shed any light on SHC in the
thermodynamic limit because of the possibility of edge effects near the contacts. However,
a numerical calculation based on the Kubo formula in the lattice model [14] suggests that SHC
is finite in the presence of disorder, while it vanishes in the thermodynamic limit. Nomura
et al [18] have numerically shown that the vanishing of intrinsic σ z

xy is peculiar to the linear-
momentum Rashba model which has been considered in the previous studies. They have shown
that for the Rashba model with cubic momentum, which is the case for a two dimensional
hole gas, the intrinsic σ z

xy is non-zero and consequently intrinsic edge-spin accumulation takes
place in the systems of two dimensional hole gases [16, 19]. On the other hand, the edge-
spin accumulation observed [15, 17] in the system of a two dimensional electron gas where
the Rashba model with linear momentum is important, is argued to be extrinsic by the ‘skew-
scattering’ mechanism [20–22]. While the issue of intrinsic versus extrinsic spin-Hall effect is
not clear yet, we show below that the linear Rashba model provides a different but robust kind
of spin-Hall effect in the two dimensional electron systems.

In this paper, we calculate the spin-Hall conductivities in the charge-spin space using the
Kubo formula in section 3. A charge current induces an out-of-plane component of spin current
in the transverse direction. This usual ac spin-Hall conductivity σ z

xy is found to be the same as
in a kinetic equation approach [10]. It however vanishes in the dc limit [9–11]. We call this
phenomenon the ‘charge-spin’ Hall effect. Apart from this, we find that an in-plane spin-
polarized current can induce a transverse spin-polarized current along the transverse spatial
direction. This phenomenon, which we call the ‘spin–spin’ Hall effect, is a spin analogue
of the conventional charge Hall effect, but in the absence of magnetic field. The relevant
Hall conductivity of this phenomenon σ⊥

xy does not vanish in the dc limit. We attribute
this phenomenon to the diffusion of spin sy along the y-direction due to a source causing
conventional sx spin diffusion along the x-direction. The corresponding diffusive equation
is derived in section 4. The detailed derivation of the diffusive propagator is available in
the appendix A. In section 5, the spin–spin Hall conductivity has been argued to be robust.
The relevance of other types of spin–spin Hall conductivity have also been discussed. The
consequence of Dresselhaus SO coupling along with the Rashba coupling on spin–spin Hall
conductivities has been discussed in appendix B.

2. Hamiltonian and Green’s functions

A system of two dimensional non-interacting electrons with Rashba spin–orbit interaction in
the presence of non-magnetic impurities from which the electrons scatter elastically can be
described by the Hamiltonian

H = H0 + V (r); H0 = p2

2m
+ λη̂ · p, (1)
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where p = −i∇ is the momentum operator, m is the effective band mass of electrons, λ is the
parameter for the strength of the Rashba spin–orbit interaction, η̂ = n × σ̂ is a spin operator
with σ̂ being the Pauli matrices, n is the unit vector perpendicular to the plane of the system,
and V (r) is the disorder potential. The eigenvalues of H0 are εs

k = k2/2m +sλk, where k is the
magnitude of the wavevector k of the electrons and s = ± is the index for spin-split subband
s. The corresponding eigenstates are given by

ψs
k(r) = eik·r 1√

2

(
eiχk/2

se−iχk/2

)
, (2)

where χk = π/2 − θ with θ being the angle of k with the x-axis. The Fermi momenta and

the density of states at the Fermi energy, εF, in the two subbands are ks
F =

√
k2

F + m2λ2 − smλ

and νs = ν(1 − s mλ√
k2

F+m2λ2
) respectively, where ν = m/2π is the density of states for each

spin direction and kF = √
2mεF is the Fermi momentum in the absence of SO interaction. The

charge and spin currents are ĵα = eα
1
2

{
σ̂α, v̂k

}
where v̂k = k

m σ̂0 + λη̂ is the velocity and σ̂0

is the unit matrix. Here α = 0–3 represents charge and three spin directions respectively and
e0 = e (charge of the electrons), e1 = e2 = e3 = 1/2 (spin of the electrons).

We next assume random disorder potential with the configurational average such that
〈V (r)〉 = 0 and 〈V (r)V (r′)〉 = γ δ(r − r′). The elastic lifetime of the electrons will then
be τ = 1/(2πγ ν). Therefore, the retarded (advanced) Green’s function for the electrons with
energy ε and wavevector k can be expressed as

ĜR,A(k, ε) = 1

2

∑
s=±

σ̂0 + sη̂k

ε − ξ s
k ± i/2τ

≡
∑
s=±

ĜR,A
s (k, ε), (3)

where η̂k = η̂·k/k is the projection of the spin operator into the direction of k and ξ s
k = εs

k−εF.

3. Hall conductivities

The spin-Hall conductivities σ z
xy , σ⊥

xy , and σ ‖
xy correspond to transverse induction of out-of-

plane (z-axis) spin current due to a charge current, transverse (in-plane) spin current due to a
spin-polarized current, and parallel spin current due to a spin-polarized current respectively.
These conductivities can be obtained using the Kubo formula:

σ z
xy(ω) = 1

4π

(
�03

xy +�30
xy

)
, (4)

σ⊥
xy(ω) = 1

4π

(
�12

xy +�21
xy

)
, (5)

σ ‖
xy(ω) = 1

4π

(
�11

xy +�22
xy

)
, (6)

where retarded off-diagonal current–current correlation functions can be written as

�αβ
xy (ω) =

∫
dk
(2π)2

Tr
(

ĵ x
α (k)ĜA(k, 0)

[
ĵ y
β (k)+ Ĵ y

β (ω)
]
ĜR(k, ω)

)
. (7)

Here the current ĵβ(k) corresponds to the bare vertex. This vertex gets corrected through Ĵβ ,
which is the self-consistent solution of the equation

Ĵβ(ω) = γ

∫
dk′

(2π)2
ĜA(k′, 0)

[
ĵβ(k′)+ Ĵβ(ω)

]
ĜR(k′, ω). (8)

It describes summation over an infinite number of ladder diagrams in a diagrammatic approach.
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To solve equation (8) and evaluate equation (7), we need to consider integrations, e.g.,∫
dk
(2π)2

ĜA
s (k, 0)ĜR

s ′ (k, ω)

which we calculate using the approximation∫
dk
(2π)2

⇒
∫ 2π

0

dθ

2π

[
νs

∫ ∞

−∞
dξ s

kδss ′ + ν

∫ ∞

−∞
dξk(1 − δss ′)

]
(9)

i.e., the integrations are performed around momentum ks
F for the intraband contribution while

the interband contributions are obtained through the expansion around kF, and the variable of
integration for the latter is ξk = k2/2m − εF. This approximation is, however, neither biased
towards any of the subbands nor negligent of their existence. This attention is important for our
result. The self-consistent solutions are thus straightforward and we find

Ĵ0(ω) = −λ 2δ2

2δ2(1 − 2iωτ)− iωτ(1 − iωτ)2
η̂ (10)

Ĵ1(ω) = −
(

kF

2m

)
δ

4δ2 − iωτ(1 − iωτ)
σ̂3x̂ (11)

Ĵ2(ω) = −
(

kF

2m

)
δ

4δ2 − iωτ(1 − iωτ)
σ̂3ŷ (12)

Ĵ3(ω) =
(

kF

2m

)
δ(1 − iωτ)

2δ2(1 − 2iωτ)− iωτ(1 − iωτ)2
σ̂ (13)

for an arbitrary value of the parameter δ = λkFτ . While Ĵ0 and Ĵ3 are due to both the intraband
and the interband contributions, Ĵ1 and Ĵ2 are due to the interband contribution only. This
means Ĵ1 and Ĵ2 exist only because of the formation of two subbands. In fact, all of these
vanish for λ = 0, in consistence with the fact that the charge transport time and the momentum
relaxation time are the same (no vertex correction) in a two dimensional system with short
range scatterers.

Using equations (4)–(13) we find the Hall conductivities:

σ z
xy(ω) =

(
eδ2

2π

)
iωτ

2δ2(1 − 2iωτ)− iωτ(1 − iωτ)2
, (14)

σ⊥
xy(ω) = −

(
�

16π

)
4δ2

[4δ2 − iωτ(1 − iωτ)][1 − iωτ ] , (15)

σ ‖
xy(ω) = 0. (16)

The spin-Hall conductivity σ z
xy(ω) in equation (14) is identical to those derived from the

quantum kinetic equation by Mishchenko et al [10] and in an approach of the Kubo formula
by Chalaev and Loss [11]. At ω = 0, the vertex correction term dramatically cancels [9–11]
the bare contribution in σ z

xy . The vanishing of σ z
xy even in the weak localization regime [11]

warns of the presence of an exact property of the system under consideration. From a general
argument, Chalaev and Loss [11] have shown σ z

xy vanishes exactly for any finite amount of
disorder. Since the spin is not conserved, the spin-Hall conductivity may not be directly
related [12] to the observed [15–17] spin accumulation at the transverse edges.

The most important result in this paper is the finding of the conductivity σ⊥
xy(ω). This

suggests that an in-plane spin-polarized current induces a transverse spin current with in-plane
spin polarization but perpendicular to the former. If the source of the spin current is polarized
along the x-axis, then a detector, placed transverse to the direction of the applied current, with
polarization along the ±y-axis can detect this novel current. Magnetic semiconductors may
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be used for spin injection as well as detection of the spin-polarized currents as described by
Fiederling et al [23] in a light-emitting diode. Further techniques [15–17] developed for the
detection of spin-accumulation in the spin-Hall effect may also be useful for observing spin–
spin-Hall effect. Unlike the conventional spin-Hall conductivity σ z

xy , this new spin–spin Hall
conductivity is finite at ω = 0 and is given by

σ⊥
xy(ω = 0) = − �

16π
, (17)

independent of the Rashba coupling parameter λ. However, from the equation (15) we see
that σ⊥

xy(ω = 0) �= 0 only when λ �= 0. In other words, λ → 0 before ω → 0 is logically
the correct limiting procedure for dc σ⊥

xy in the absence of spin–orbit interaction. The bare

and vertex correction contribution to σ⊥
xy in equation (17) are − �

16π

(
4δ2

1+4δ2

)
and − �

16π

(
1

1+4δ2

)
respectively. Clearly the dominant contribution is due to the vertex correction. The vanishing
σ

‖
xy in equation (16) implies zero parallel spin-polarized current in the transverse direction.

4. Spin diffusion

We now derive the spin-diffusive equation for understanding the above novel spin–spin
Hall effect. The retarded charge and spin density correlation functions at frequency ω and
momentum q can be written as

χαβ(q, ω) = iω

2π

∫
dk

(2π)2
Tr

[
σ̂αĜA(k, 0)M̂β ĜR

β (k + q, ω)σ̂β
]

(18)

where α, β = 0–3 corresponding to charge and three spin directions, ĜR
β (k, ε) =

σ̂β ĜR(k, ε)σ̂β , and M̂β = ∑∞
j=0 m̂( j)

β with m̂(0)
β = σ̂0 and

m̂( j)
β = γ

∫
dk′

(2π)2
ĜA(k′, 0)m̂( j−1)

β ĜR
β (k

′ + q, ω); j � 1. (19)

It is very easy to check that the equation (18) includes infinite number of ladder diagrams for
the vertex correction. Although the expression of χαβ (18) appears to be uncommon, we find
it to be a very convenient way to express for all orders of diagrams since we need to maintain
the order of matrices inside the trace. The expression of χαβ in (18) is formal. We however
evaluate it for small q and ω such that ωτ  1 and q  kF, and using the approximation
in the expression (9) for the integration over electron momenta. We iteratively calculate the
coefficients of the σ̂α in the m̂( j)

β (19) and take the sum of geometrical series of the coefficients.
The readers interested in the details of the calculation may look at appendix A.

Expressing m̂(1)
β = ∑3

α=0 mβασ̂α and

χαβ = 2iνωτ
(Dαβ − δαβ

)
(20)

in a standard form, we find the inverse diffusion propagator to be

D−1 =



1 − m00 −m11 −m22 0
−m01 1 − m10

m21m32
1−m30

−im32

−m02
m12m31
1−m30

1 − m20 im31

0 im12 −im21 1 − m30


 (21)

where m00 = 1 + τ (iω− Dq2),m10 = m20 = m00 − τ/τ
‖
s ,m30 = m00 − τ/τ⊥

s with diffusion
constant D = �/m, and τ⊥

s = τ (1 + 4δ2)/4δ2 and τ ‖
s = τ (1 + 4δ2)/2δ2 being the out-of-

plane and in-plane spin relaxation times respectively, m01 = m11 = 2iqyδ
3/kF(1+4δ2), m02 =

m22 = −(qx/qy)m01, m12 = m32 = −4qxδ�/kF(1 + 4δ2)2 and m21 = m31 = −(qy/qx)m12.



7354 A Sensharma and S S Mandal

We thus find D−1
21 = −2qxqy�τ/m(1 + 4δ2)3 for ω = 0. Clearly D−1

21 and D−1
12 are non-zero

for small δ, contrary to the recent result of Burkov et al [24]. (See appendix A for details.)
This is because the spin relaxation provides an energy cut-off. These are indeed the responsible
terms for driving transverse spin in the transverse direction as we shall show below. However,
the other components of D−1 are in agreement with reference [24].

Transformation of the inverse diffusive propagator (21) into real space and time leads to
the transport equations for spins with planar projection (neglecting gradients of charge and
out-of-plane components of spin densities):

∂Sx

∂ t
=

(
D∇2 − 1

τ
‖
s

)
Sx − 2D

(1 + 4δ2)3
∂x∂y Sy + Ix (22)

∂Sy

∂ t
=

(
D∇2 − 1

τ
‖
s

)
Sy − 2D

(1 + 4δ2)3
∂x∂y Sx + Iy (23)

where Sx (Sy) is the spin density along the x (y) direction and the x (y) component of the spin
current Ix (Iy) is injected into the system. Although the coefficients of ∂x∂y Sy in equation (22)
and ∂y∂x Sx in equation (23) appear to be non-zero for δ = 0, these coefficients in fact vanish
strictly at δ = 0. The spin diffusive equations (22) and (23) are valid for ωτ  4δ2. Clearly,
the injected spin current Ix(Iy) not only transports the Sx (Sy) component of spin along the
direction of the current but also drives the Sy (Sx) component of spin along the transverse
direction. The finite dc spin–spin Hall conductivity (17) including sign arises as a manifestation
of this fact.

5. Discussion and summary

Since, due to the precession, the spin is not conserved [12, 24], the definition of spin current
is not unique. We, however, have considered the generally accepted definition of the spin-
current operator, i.e. the symmetrization of the product of spin operator and the group velocity
of electrons. Apart from this spin current, which depends on the translational motion of spin,
there is a current associated with the rotational motion [25]. Albeit the definition of current is
not unique, the arbitrariness lies only in the terms proportional to the SO coupling parameter λ.
The kinetic parts [24] (which are proportional to the momentum of electrons and independent
of λ) of the spin currents are, however, unique. The substantial contribution in σ⊥

xy which arises
due to vertex correction (17) is entirely due to the kinetic part of the spin currents, and it is not
proportional to any power of λ. We therefore believe that the ‘spin–spin’ Hall effect is robust
in the system of a two dimensional electron gas with Rashba spin–orbit interaction.

We have calculated σ⊥
xy and σ ‖

xy , which suggest spin–spin Hall conductivities when the
induced spin current has respective spin polarization perpendicular and parallel to the spin
polarization of the applied spin current. These spin polarizations are in the plane of the 2DES.
While the mechanism for the usual spin-Hall effect in this system is mainly the momentum
dependent spin precession along with the spin relaxation, the mechanism behind the spin–spin
Hall effect is spin diffusion. If the spin polarization of the applied spin current is out of the
plane of the system, we find the corresponding components of off-diagonal current–current
correlation functions (7) vanish: �13

xy +�31
xy = �23

xy +�32
xy = �11

xy +�33
xy = �22

xy +�33
xy = 0.

In other words, the spin–spin Hall effect is possible only when the applied spin-current’s
polarization is in the plane of the system.

In summary, we predict that an in-plane spin-polarized current can induce a transverse
spin-polarized current along the transverse direction. This phenomenon, which we call the
‘spin–spin’ Hall effect, is a spin analogue of the conventional Hall effect, but with no magnetic
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field. The reason for this phenomenon is the transverse spin diffusion along the transverse
direction due to the application of a source causing conventional spin diffusion.
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Appendix A. Diffusive propagator

In this appendix, we present a detailed calculation of the charge–spin density correlation
function, and hence the inverse diffusive propagator, and compare with the previous result [24].
The retarded charge–spin density correlation function can be represented by a sum of an infinite
number of ladder diagrams:

χαβ(q, ω) =
∞∑
j=0

χ
( j)
αβ (q, ω), (A.1)

where ( j) represents the order of the diagrams. Explicitly these are given by

χ
(0)
αβ (q, ω) = iω

2π
Tr

[∫
dk
(2π)2

σ̂αĜA(k, 0)σ̂β ĜR(k + q, ω)
]

(A.2)

χ
(1)
αβ (q, ω) = iω

2π
Tr

[
γ

∫
dk
(2π)2

∫
dk1

(2π)2
σ̂αĜA(k, 0)

× ĜA(k1, 0)σ̂β ĜR(k1 + q, ω)ĜR(k + q, ω)
]

(A.3)

and so on. In the expression of χαβ , the contribution at ω = 0 and q = 0 for diagonal terms
has been ignored. It is crucial to maintain the relative positions of the matrices inside the trace
while performing the infinite series. To express all the orders in a compact form and to calculate
those, we find it convenient to shift σ̂β to the extreme right, but in doing so ĜR(k + q, ω) will
be modified to ĜR

β (k + q, ω) = σ̂β ĜR(k + q, ω)σ̂β . We thus find

χ
(0)
αβ (q, ω) = iω

2π
Tr

[
σ̂α

∫
dk
(2π)2

ĜA(k, 0)ĜR
β (k + q, ω)σ̂β

]
(A.4)

χ
(1)
αβ (q, ω) = iω

2π
Tr

[
σ̂α

∫
dk
(2π)2

ĜA(k, 0)

{
γ

∫
dk1

(2π)2

× ĜA(k1, 0)ĜR
β (k1 + q, ω)

}
ĜR
β (k + q, ω)σ̂β

]
(A.5)

χ
(2)
αβ (q, ω) = iω

2π
Tr

[
σ̂α

∫
dk
(2π)2

ĜA(k, 0)

(
γ

∫
dk2

(2π)2
ĜA(k2, 0)

×
{
γ

∫
dk1

(2π)2
ĜA(k1, 0)ĜR

β (k1 + q, ω)
}
ĜR
β (k2 + q, ω)

)
ĜR
β (k + q, ω)σ̂β

]

(A.6)

and so on. Defining

m̂( j)
β (q, ω) = γ

∫
dk′

(2π)2
ĜA(k′, 0)m̂( j−1)

β (q, ω)ĜR
β (k + q, ω); j � 1 (A.7)
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with m̂(0)
β = σ̂0, and summing over all orders (the lowest three orders given in equations (A.4)–

(A.6)), we rewrite the retarded charge–spin density correlation function as

χαβ(q, ω) = iω

2π
Tr

[
σ̂α

∫
dk
(2π)2

ĜA(k, 0)

( ∞∑
j=0

m̂( j)
β (q, ω)

)
ĜR
β (k + q, ω)σ̂β

]
. (A.8)

Expressing

m̂(1)
β (q, ω) = γ

∫
dk1

(2π)2
ĜA(k1, 0)ĜR

β (k1 + q, ω)

≡ mβ0σ̂0 + mβ1σ̂1 + mβ2σ̂2 + mβ3σ̂3 (A.9)

with β varying from 0 to 3, we obtain 16 components of mβα, which are m00 = 1+τ (iω−Dq2),
m10 = m20 = m00 − 2δ2

1+4δ2 , m30 = m00 − 4δ2

1+4δ2 , m01 = m11 = 2i qy

kF

δ3

(1+4δ2)
, m02 = m22 =

− qx

qy
m01, m12 = m32 = − qx

kF

4δ�
(1+4δ2)2

, m21 = m31 = − qy

qx
m12, m03 = m33 = 0; m13 and m23

are O
(

q2

k2
F
, δ2

)
and are very small compared to the others. Here diffusion constant D = 1

2v
2
Fτ ,

dimensionless Rashba coupling strength δ = λkFτ and � = εFτ .
One has now to sum four infinite series of matrices, one for each value of β , to find out

the matrix
∑∞

j=0 m̂( j)
β , using (A.7) iteratively. We show the explicit calculation of

∑∞
j=0 m̂( j)

1
below; others may be obtained following the same procedure.

From equation (A.7), we find

m̂(2)
1 = γ

∫
dk′

(2π)2
ĜA(k′, 0)m̂(1)

1 (q, ω)ĜR
1 (k

′ + q, ω)

= γ

∫
dk′

(2π)2
[
m10ĜAσ̂0ĜR

1 + m11ĜAσ̂1ĜR
1 + m12ĜAσ̂2ĜR

1 + m13ĜAσ̂3ĜR
1

]

= γ

∫
dk′

(2π)2
[
m10ĜAĜR

1 σ̂0 + m11ĜAĜR
0 σ̂1 + m12ĜAĜR

3 σ̂2 + m13ĜAĜR
2 σ̂3

]

= m10m̂(1)
1 σ̂0 + m11m̂(1)

0 σ̂1 + m12m̂(1)
3 σ̂2 + m13m̂(1)

2 σ̂3. (A.10)

Putting m̂(1)
β in (A.10) and collecting the coefficients of each Pauli matrix, we obtain

m̂(2)
1 = σ̂0[(m10)

2 + m11m01 + m12m32 + m13m23] + σ̂1[m11m10 + m11m00 + im13m22]
+ σ̂2[m12m10 + m12m30 − im13m21]
+ σ̂3[m13m10 − im11m02 + im12m31 + m13m20]
≈ σ̂0[(m10)

2] + σ̂1[m11(m10 + m00)] + σ̂2[m12(m10 + m30)] + σ̂3[im12m31],
(A.11)

where the smaller terms are neglected in the last expression. Note that each term in the
coefficient of σ̂3 is O(q2/k2

F), but the one which is kept has much larger coefficient than the
others. Similarly,

m̂(3)
1 ≈ σ̂0(m10)

3 + σ̂1m11
[
(m10)

2 + (m00)
2 + m10m00

] + σ̂2
[
(m10)

2 + (m30)
2 + m10m30

]
+ σ̂3 [im12m31 (m10 + m20 + m30)] . (A.12)

One can anticipate the higher orders now. Summing all the orders,
∞∑
j=0

m̂( j)
1 = σ̂0

1

1 − m10
+ σ̂1

m11

(1 − m10)(1 − m00)

+ σ̂2
m12

(1 − m10)(1 − m30)
+ σ̂3

im12m31

(1 − m10)(1 − m20)(1 − m30)
. (A.13)
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We similarly find
∞∑
j=0

m̂( j)
0 = σ̂0

1

1 − m00
+ σ̂1

m01

(1 − m00)(1 − m10)
+ σ̂2

m02

(1 − m00)(1 − m20)
(A.14)

∞∑
j=0

m̂( j)
3 = σ̂0

1

1 − m30
+ σ̂1

m31

(1 − m20)(1 − m30)
+ σ̂2

m32

(1 − m10)(1 − m30)
(A.15)

∞∑
j=0

m̂( j)
2 = σ̂0

1

1 − m20
+ σ̂1

m21

(1 − m20)(1 − m30)

+ σ̂2
m22

(1 − m20)(1 − m00)
+ σ̂3

−im21m32

(1 − m10)(1 − m20)(1 − m30)
. (A.16)

It is now straightforward to calculate χαβ using equations (A.8), and (A.13)–(A.16):

χ̂(q, ω) = 2νiωτ




m00
1−m00

m11
(1−m00)(1−m10)

m22
(1−m00)(1−m20)

0

m01
(1−m00)(1−m10)

m10
1−m10

−i m21m32
(1−m10)(1−m20)(1−m30)

i m32
(1−m10)(1−m30)

m02
(1−m00)(1−m20)

i m12m31
(1−m10)(1−m20)(1−m30)

m20
1−m20

−i m31
(1−m20)(1−m30)

0 −i m12
(1−m10)(1−m30)

i m21
(1−m20)(1−m30)

m30
1−m30




(A.17)

The diffusive propagator Dαβ is connected with the charge–spin density correlation function by
the relation

χαβ = 2νiωτ(Dαβ − δαβ) (A.18)

We thus find the inverse diffusive propagator to be

D−1 =



1 − m00 −m11 −m22 0
−m01 1 − m10

m21m32
1−m30

−im32

−m02
m12m31
1−m30

1 − m20 im31

0 im12 −im21 1 − m30


 . (A.19)

Instead of calculating χ̂(q, ω) explicitly as we have done above (A.17), if one defines

χαβ(q, ω) = iνωτIαδDδβ (A.20)

with

Iαβ = γ

2
Tr

[∫
dk′

(2π)2
σ̂αĜA(k′, 0)σ̂β ĜR(k′ + q, ω)

]
(A.21)

= 1
2 Tr

[
σαm̂(1)

β σβ

]
(A.22)

and

D−1
αβ = δαβ − Iαβ (A.23)

as in [24], one finds the inverse diffusive propagator to be

D−1 =



1 − m00 −m11 −m22 0
−m01 1 − m10 im23 −im32

−m02 −im13 1 − m20 im31

0 im12 −im21 1 − m30


 . (A.24)

Clearly, D−1
12 �= D−1

12 and D−1
21 �= D−1

21 but the other components of D−1 and D−1
are the

same. While D−1
12 and D−1

21 are very small since m13 and m23 are small due to their quadratic
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dependence on the small parameter δ, D−1
12 and D−1

21 are not small because these are independent
of δ in the limit of small δ. These are indeed the important terms for transverse spin diffusion
and hence spin–spin Hall effect. The way of obtaining inverse diffusive propagator using
combined expressions (A.20)–(A.23) is incorrect because the non-commutative nature of Pauli
matrices is not correctly taken care of, as we have seen from our explicit calculation of χ̂ in
equation (A.17).

Appendix B. Role of Dresselhaus spin–orbit coupling

Due to the bulk inversion asymmetry, the 2DES will also have Dresselhaus spin–orbit coupling.
The strength of this coupling is however much smaller than the Rashba coupling. This appendix
contains the derivation of the dc spin–spin Hall conductivities in the presence of both Rashba
and Dresselhaus spin–orbit couplings. The Hamiltonian in this case is

H = H0 + V (r); H0 = p2

2m
+ λ

(
σ̂1 py − σ̂2 px

) + β
(
σ̂1 px − σ̂2 py

)
(B.1)

with the eigenvalues

εs
k = k2

2m
+ sλRDk; λRD(θ) =

√
λ2 + β2 + 4λβ sin θ cos θ (B.2)

where β is the Dresselhaus SO coupling strength. The energy spectrum now depends on
modified SO coupling strength λRD(θ). The Fermi surfaces of both the branches are anisotropic

here and the corresponding Fermi momenta are ks
F = −smλRD +

√
k2

F + m2λ2
RD.

The retarded (advanced) Green’s functions for the electrons in this case can be written as

ĜR,A(k, ε) = 1

2

∑
s=±

σ̂0 + s
(
cos χ̂kσ̂1 − sin χ̂kσ̂2

)
ε − ξ s

k ± i/2τ
(B.3)

where cos χ̂k = λ sin θ+β cos θ
λRD

and sin χ̂k = λ cos θ+β sin θ
λRD

.
We proceed to calculate spin–spin Hall conductivities in the same way as in section 3,

but the calculation is much more cumbersome due to the angle dependent spin–orbit coupling
strength λRD(θ) in the dispersion. We find however that one can avoid a lot of complication in
self-consistent evaluation of the vertex corrected currents, by concentrating on the largest order
in�. As long as the conductivities are non-zero in this order, the lower orders may be ignored.
The vertex-corrected in-plane spin current components in the dc limit are thus found to be

Ĵ x
1 = Ĵ y

2 ≈ −2�

B

λB + β
(√

A2 − B2 − A
)

√
A2 − B2 − 1

σ̂3 (B.4)

Ĵ x
2 = Ĵ y

1 ≈ −2�

B

βB + λ
(√

A2 − B2 − A
)

√
A2 − B2 − 1

σ̂3 (B.5)

with A = 1 + 4δ2 + 4δ2
D , B = 8δδD , and δD = βkFτ .

The dc spin–spin Hall conductivities, defined in equations (5) and (6), can be obtained now
via retarded current–current correlation function (7). We find

σ⊥
xy ≈ − �

8π

(
A2 − B2 − A

B2

) √
A2 − B2 − A√
A2 − B2 − 1

(B.6)

σ ‖
xy ≈ − �

8π

(
1

B

) √
A2 − B2 − A√
A2 − B2 − 1

. (B.7)
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The fact that σ ‖
xy is non-zero suggests that the spin polarization of the induced spin current

in the transverse direction is not fully perpendicular to the applied spin current. It is, in fact,
fully perpendicular when one of the couplings is absent. Therefore, in realistic situations, where
β  λ, the spin polarizations of the applied and induced spin currents are almost perpendicular
to each other as σ ‖

xy/σ
⊥
xy ∼ δD/[δ(1 + 4δ2)]  1 in this limit.
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